Longest Vehicle: Ladder 7
Specifications: Inside to Inside = 24' 5" Curb to Curb = 40' ${ }^{\prime \prime}$
Wall to Wall = 47' $7^{\prime \prime}$

Turning Performance Analysis

Actual Inside Cramp Angle may be less due to highly specialized options.
Curb to Curb turning radius calculated for a 9.00 inch curb.

Bid Number:	Concord Fire Department
Department:	1399

Chassis: Dash-2000, Chassis, PAP/SkyArm/Midmount
Body: Aerial, Platform 100', Alum Body

Definitions:

Inside Cramp Angle
Axle Track King-pin to king-pin distance of the front axle.
Wheel Offset Offset from the center-line of the wheel to the king-pin.
Tread Width Width of the tire tread.

Chassis Overhang bumper depth.

Additional Bumper Depth Depth that the bumper assembly adds to the front overhang.
Wheelbase Distance between the center lines of the vehicle's front and rear axles.
Inside Turning Radius Radius of the smallest circle around which the vehicle can turn.
Curb to Curb Turning Radius Radius of the smallest circle inside of which the vehicle's tires can turn. This measurement assumes a curb height of 9 inches.

Wall to Wall Turning Radius Radius of the smallest circle inside of which the entire vehicle can turn. This measurement takes into account any front overhang due to the chassis, bumper extensions and/or aerial devices.
$R=40^{\prime}-2 "$

SCALE
$1 "=20 '$

$$
R=40^{\prime}-2 \prime \prime
$$

SCALE

$1 "=30^{\prime}$

$$
R=40^{\prime}-2 \prime \prime
$$

SCALE
$1 "=40 '$

$$
R=40^{\prime}-2 \prime \prime
$$

SCALE
$1 "=50 '$

$$
R=40^{\prime}-2 \prime \prime
$$

SCALE
$1 "=60 '$

$$
R=40^{\prime}-2 \prime \prime
$$

SCALE
$1^{\prime \prime}=80^{\prime}$

SCALE
$1 "=100 '$

